interacion du dernier sub quanta avec un proton

Interaction du dernier sub quanta avec un proton ou un électron.

 

Si le dernier sub quanta est réellement l’ultime entité qui forme la matière, voici quel effet il a quand il interagit avec un système complexe comme le proton ou l’électron.

Nous considérons l’électron ou le proton comme les seuls systèmes stables dans l’univers. Ils peuvent être défaits seulement en interagissant avec leur contraire:  électron + positron ou proton + antiproton. Ils redeviennent des non-systèmes alors. Ils sont refait comme systèmes quand une lumière intense de haute fréquence interagit à travers un groupe d’atomes lourds. Pour  l’électron, on a besoin d’une lumière de 1.022 MeV qui correspond à une fréquence de 1.8×10 21 hertz.

 

Quand ils sont des systèmes complexes stables, ils émettent en moyenne autant qu’ils reçoivent de toutes les directions. Si on pouvait calculer le vecteur total des émissions et des réception et que ces 2 vecteurs étaient exactement zéro, alors le système conserve la même vélocité qu’avant. Ceci est tellement rare qu’il ne se produit presque jamais. En tant normal, les émissions et les réceptions causent un changement de vélocité et c’est ce qui explique le système atome et toutes les interactions de la matière dans l’univers matériel.

 

Si un seul dernier sub quanta interagit avec un système, cela cause un changement de la vélocité du système. Ce changement est rapidement changé quand un autre dernier sub quanta interagit avec ce système. Pour avoir un changement constant de vélocité, il faut que les réceptions soient plus dense venant d’une certaine direction. C’est le cas des objets sur terre qui reçoivent plus de gravité venant de l’espace que le montant de gravité qui traverse la terre. Donc la vélocité de l’objet est dirigé vers le sol. Nous nommons cet effet la pesanteur et la mesure est d’environ 9.8 Newton par kilogramme qui donne une accélération de 9.8 mètre par seconde carrée.

 

 

neutron star and space gravity

neutron star and space gravity

A neutron star has a gravitational force of about 2×1012 N/kg.

Since its density is so great, the stars blocks all gravity coming from space and that gravity does not go through the star. It becomes part of the neutrons. That means the gravity going in all direction in space can exert a force of  about 2×1012 N/kg. Since earth blocks some of that gravity and the result is only about 10 N/kg, that means planet earth blocks only about 5×10-12 % of gravity coming from space.

Because neutron stars called also black holes blocks gravity, an object close to the star is pushed toward the star with a force of 2×1012 N/kg. It seems for an observer that the star is attracting the object but in reality, the object is pushed toward the star because it receives a force from only one direction, as illustrated here.

Gravity coming from all directions of space towards earth

neutgron 1      Near a neutron star

n2

 

 

 

 

 

 

 

 

 

Galaxy rotation anomaly

 

Galaxy rotation anomaly

 

Text from wikipedia:

https://en.wikipedia.org/wiki/Galaxy_rotation_curve

If Newtonian mechanics is assumed to be correct, it would follow that most of the mass of the galaxy had to be in the galactic bulge near the center and that the stars and gas in the disk portion should orbit the center at decreasing velocities with radial distance from the galactic center (the dashed line in Fig. 1).

Observations of the rotation curve of spirals, however, do not bear this out. Rather, the curves do not decrease in the expected inverse square root relationship but are “flat”, i.e. outside of the central bulge the speed is nearly a constant (the solid line in Fig. 1). It is also observed that galaxies with a uniform distribution of luminous matter have a rotation curve that rises from the center to the edge, and most low-surface-brightness galaxies (LSB galaxies) have the same anomalous rotation curve.

The rotation curves might be explained by hypothesizing the existence of a substantial amount of matter permeating the galaxy that is not emitting light in the mass-to-light ratio of the central bulge. The material responsible for the extra mass was dubbed “dark matter”, the existence of which was first posited in the 1930s by Jan Oort in his measurements of the Oort constants and Fritz Zwicky in his studies of the masses of galaxy clusters. The existence of non-baryonic cold dark matter (CDM) is today a major feature of the Lambda-CDM model that describes the cosmology of the universe.

  https://www.google.ca/search?q=elliptical+galaxy+speed+problems&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjT-JGktLDbAhXn7oMKHTiMDdQQ_AUICigB&biw=808&bih=606

galaxie 2a

 Rotation curve of spiral galaxy M 33 (yellow and blue points with error bars), and a predicted one from distribution of the visible matter (white line). The discrepancy between the two curves can be accounted for by adding a dark matter halo surrounding the galaxy. 

 galaxie 1a

A simulated galaxy without dark matter. Right: Galaxy with a flat rotation curve that would be expected under the presence of dark matter.

 Comparison of rotating disc galaxies in the distant Universe and the present day

 ————————————————————————————

There is  another possibility to explain the difference in velocity observed in these galaxies. Many experimental results on the effect of light on the weight of objects suggest that all matter emit gravity in all directions. Some of that gravity is absorbed by atoms and changed the velocity of these atoms. That seems to be a pushing force caused by gravity.

galaxy c

The galaxy shown on the right is surrounded by millions of other galaxies as seen in the picture on the left. Each atom of these galaxies also emit gravity. That gravity reaching the galaxy in the middle of the picture will exert a pushing force on all its atoms. But some of that gravity is blocked partially going through the galaxy. That causes an imbalance mostly on stars on the outside of the galaxy. They receive more gravity from the exterior that from the interior. The total forces looks like there was a kind of attraction coming from the center. That was the origin of the concept of black matter in the center of the galaxy.

At first observation, it seems that it would receive more gravity coming from the interior because it contains more atoms, but that is not so. The reason is because that galaxy is like a flat pancake, the gravity going toward one star at the edge is more intense in the same plane as of the galaxy itself. But the stars on the perimeter receives gravity not only in the same plane as the galaxy but also from all directions of space. The total amount when all the vector forces are added causes a bigger pushing force in the plane of the galaxy oriented toward the center of the galaxy. The next diagram explains that force.galaxy a

Gravity emitted by the galaxy is going in all directions and there is more in the same plane as the galaxy.

 The star in the red circle seems to receive more gravity in the same plane as the galaxy. But it also receives gravity from all directions as shown in the drawing at the left. The total vector forces is now directed toward the center of the galaxy as shown in the drawing at the right. That is the reason the velocity of that star does follow the inverse square root formula. We do not need any special black matter to explain this behaviour.

galaxy b