Gravity transformed into light

Gravity transformed into light

 

The experimental results on the effect of light beam on  gravity suggest strongly that light and gravity can interact together. That also suggest that what makes light and what makes gravity both travel at the same speed. It is even possible that the entities making light and entities making gravity are the same but are travelling in two different manner through space.

Gravity would be emitted by every nuclei in all directions without any frequency but in a continuous manner.

Visible light is emitted by electrons and these emission have a frequency because there is a variation in intensity when electrons emit light.

A simple experiment could verify if that is correct. If gravity and light are made of entities exactly the same but traveling in different manner and since light seems to be able to block some of that gravity, an apparatus can be build to transform gravity having no frequency to a flow having frequency, the same as light.

Some powerful laser can be activated in a pulse form instead of a continuous emission. If such a beam is transformed into a line beam it could be use like this.

Send a laminar light beam horizontally in the same plane as the floor of the lab. ( a laminar beam produces a strait line when hitting the wall; that line has to be horizontal)

  1. Use a high frequency for that laser light, for example at a frequency of 1014 c/s. which would be in visible spectrum.
  2. Place a metallic barrier over and above the apparatus.
  3. Place a sensitive detector above and on below the apparatus and connect them to a double beam oscilloscope.

N.B. If gravity vectors in the vertical direction are changed from continuous flow to a pulsating flow, the sensors will show that result on the oscilloscope.

  1. Compare the intensity of both signals received from the sensors.

N.B. Since the upward gravity is less than the downward gravity, the sensor over the apparatus would have a smaller intensity than the sensor under the apparatus.

  1. Rotate the whole system by 90 degrees in order to have measures coming from the horizontal vectors of gravity.

N.B. In that position, since the gravity coming from one side is almost exactly equal to the gravity coming from the  other side, the two sensors should indicate the same intensity.

Conclusion: If there is a change of intensity in the first part of experiment ( 1 to 5) that is a clear indication that gravity flow was changed from continuous to pulsating flow. Gravity was changed into light. It is also a strong indication that gravity is pushing, coming from all directions in space.

That discovery will help to better understand light and gravity and might be worth a Noble Prize.

About Louis

In this site, I will give a summary of the discoveries to date and the new one also. My family helps me a lot: Benoît is discussing the findings; my wife Madeleine, a nurse is helping also. My daughter Rosanne devised this WEB site and her husband Jamie is a proficient programmer who can help me a lot, even with his big family of 7 nice kids. I am now retired after 52 years of teaching mostly physics and maths. Bonjour Je suis un professeur de sciences depuis plus de 50 ans. J’ai enseigné de la 7e année à la 12e puis à l’université d’Ottawa et enfin au collèege. J’enseigne depuis plus de 25 ans au collège Boréal, Sudbury, Ontario, Canada. Depuis le début, je désirais comprendre la gravité. Après beaucoup d’essai infructueux, j’ai découvert qu’un rayon de lumière peut bloquer la force de gravité. Encore beaucoup de recherche permettront de comprendre la nature de la gravité. Mon grand gars Benoît ia fait un baccalauréat en Sciences infirmières . Il m’a beaucoup encouragé dans ma recherche. Mon épouse Madeleine est infirmière et ma grande fille Rosanne a réussi à faire ce site WEB malgré le travail avec ses 7 beaux enfants. Mon gendre Jamie Parent est programmeur et très habile avec les ordinateurs. Louis Joseph Rancourt
Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>