gravity: region, not a field


Gravity is not a field in the sense used by Maxwell. It is a region where some entities are moving in strait line at speed of light. This is the best explanation for the experimental results obtained in 2017.

 Apparatus used: A mirror box was built about one cubic feet. Mirrors were placed in the box to obtain a concentrated horizontal beam of light. The source of light was ten 8000 lumen LED cooled by water. A 100 g mass was placed under the box in the middle of a lever and one end of the lever was resting on the platen of a balance. The other end was resting on a knife edge.

When the light was activated, the loss of weight was recorded with a web camera.

1 beam

The front side of the box is omitted to see the two grey mirrors. The yellow light beam is horizontal and is reflected upward and leaves the box as shown by the blue arrow. The left drawing is the controls for the LEDS.

After 12 minutes, the object lost 0.15% of its weight. If the experiment could last for about 666 hrs, it might have been weightless.

The box was then modified with small mirrors in order to have the light beam reflected horizontally back and forth 15 times. It then was reflected to joins the incoming light beam.

boite 15 reflets

The front side of the box is omitted to see the grey mirrors.

The light from the 10 LEDS is reflected by the mirrors and stays in the box.

A 100 g mass was placed under the box in the middle of a lever and one end of the lever was resting on the platen of a balance. The other end was resting on a knife edge.

When the light was activated, the loss of weight was recorded with a web camera. The object lost 0.0124% of its weight after 60 minutes. That would be about 0.00248 %in 12 minutes.


The hypothesis behind that experiment was that each horizontal light beam would block some of the gravity coming from space above and the 100 g mass under the box would loose some weight. Each horizontal light beam would contribute to increase the blocking effect, compare to only one light beam. The 100 g mass should loose more weight with multiple light beams.

The effect was the complete opposite. The 100 g mass lost over 60 times more weight when there was only one light beam over it.

CONCLUSION: If gravity inside the box was a kind of a field, then those results are impossible. If the energy of light was changing the amount of field of gravity, in the first experiment, the energy in the box was way less than the energy in the second experiment where the light was all contained in the box. That means simply that it is not the energy from the light that changes the amount of gravity blocked by light.


All nucleons in universe are always in motion relatively to ‘static’ space.

If gravity is emitted by every nucleon in universe, that would fill space with the entities that make gravity. These would always travel at speed of light, going in all directions. They would interact with every nucleon by becoming part of the nucleon; when more are coming from one side of the nucleon, the whole nucleon system is reassemble a little farther. An observer will say it has moved because it was pushed. This effect is not a pushing force like a billiard ball hitting another because the incoming gravity is now part of the moving nucleon system. That nucleon as a system will continue to emit gravity and thus remains almost the same as before. The added difference is a movement in a certain direction caused by incoming gravity that was more dense in one side of the nucleon compared to the other side. The pushing effect is always caused by the difference between opposite forces of gravity.

The 100 g mass receives those entities from every directions of space and these interact with each nucleon in the mass. Since the light beams blocks some of these entities coming down, the net total force from the gravity coming from below will be directed upward. That would explain the loss of weight.

With only one beam going horizontally, there is a small percentage of the entities going down that are pushed aside and not reaching the 100 g mass. The net force is lower and the weight diminish.

When multiple horizontal beams are going back and forth in the mirror box, the entities are pushed in one direction by one beam and pushed back in the original path by the next beam of light going in the opposite direction. Each odd beam cancels the effect of each even beam. Since there is a loss of light at each reflection on the mirrors, the first bottom horizontal beam is stronger than each next one and there is a small effect on the weight of the 100 g mass.


ENTITIES of gravity. I did not use the term graviton here because the word graviton is used in physic with some properties assign to it that do not correspond to the properties of the entities that are the cause of the gravitational effect. It is more appropriate to use the term region of gravity that field of gravity.

These entities resemble what Michelini named miro quanta in his paper.


(Major Gravitational Phenomena Explained by the Micro-Quanta … )


It seems that these cannot have frequency as Michelini suggest because each one is unique and going at speed of light. To have frequency, we need at least 3 such things. The energy associated to each one appears only when it interact with one another. The interaction causes only a change of direction, not a change of speed which remains the speed of light.


When an intense beam of high frequency light passes through a thin sheet of heavy metal, something gets organised in a stable system called electrons and positrons. At higher frequency, it becomes nucleons and when enough of them in the system nucleon change direction, the nucleon changes its velocity. That is the origin of what we call its energy when nucleons interact with other nucleons.

Some scientists use the term wave to describe gravity because a wave represents a kind of movement. What I envisaged is more like a rain of something but that rain is coming from all directions, not only from above.

A small program does show small entities going in all directions and bouncing on one another, at always the same speed. The movement is slow compared to the real speed of light to be enable to see that movement. The program shows only in 2 dimensions and only in 6 axis.

program of moving entities of gravity:



About Louis

In this site, I will give a summary of the discoveries to date and the new one also. My family helps me a lot: Benoît is discussing the findings; my wife Madeleine, a nurse is helping also. My daughter Rosanne devised this WEB site and her husband Jamie is a proficient programmer who can help me a lot, even with his big family of 7 nice kids. I am now retired after 52 years of teaching mostly physics and maths at primary level, high school, university and college level. Bonjour Je suis un professeur de sciences depuis plus de 50 ans. J’ai enseigné de la 7e année à la 12e puis à l’université d’Ottawa et enfin au collèege. J’ai enseigné depuis plus de 25 ans au collège Boréal, Sudbury, Ontario, Canada. Depuis le début, je désirais comprendre la gravité. Après beaucoup d’essai infructueux, j’ai découvert qu’un rayon de lumière peut bloquer la force de gravité. Encore beaucoup de recherche permettront de comprendre la nature de la gravité. Mon grand gars Benoît a fait un baccalauréat en Sciences infirmières . Il m’a beaucoup encouragé dans ma recherche. Mon épouse Madeleine est infirmière et ma grande fille Rosanne a réussi à faire ce site WEB malgré le travail avec ses 7 beaux enfants. Mon gendre Jamie Parent est programmeur et très habile avec les ordinateurs. Louis Joseph Rancourt
Bookmark the permalink.

2 Responses to gravity: region, not a field

  1. Dan says:

    Are you aware of the experiment that uses mercury spinning very fast under a lot of current to shield gravity?

Leave a Reply

Your email address will not be published. Required fields are marked *